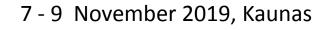
MEDICAL PHYSICS IN THE BALTIC STATES 14 (2019)


Proceedings of International Conference "Medical Physics 2019" 7 - 9 November 2019, Kaunas, Lithuania

PROPOSAL OF QUALITY ASSURANCE SYSTEM FOR POSITRON EMISSION TOMOGRAPHY IN THE RUSSIAN FEDERATION

Chipiga Larisa

¹Research Institute of Radiation Hygiene, St. Petersburg A.M Granov

²Russian Scientific Center of Radiology and Surgical Technologies, Saint-Petersburg

Current status of PET in Russia

- 50 PET units in operation in 2019
- 10+ PET units to be installed in 2020
- 50% with local radiopharmaceutical production with cyclotron
- Equipment is diversified by vendor and generation (age)
- Differences in clinical protocols and radiologist training
- Incomparable quantitive results in different PET departments

QA in regulatory documents

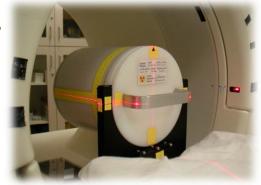
SanPiN 2.6.1. 3288-15:

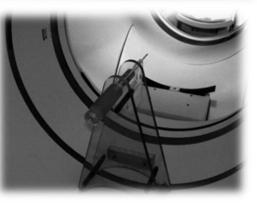
QA program should include:

- QC
- Patient preparation
- Optimization of the acquisition protocols
- Reporting
- Collecting and removing the waste
- Training of the staff in the field of radiation protection
- QC of radiopharmaceuticals

In practice

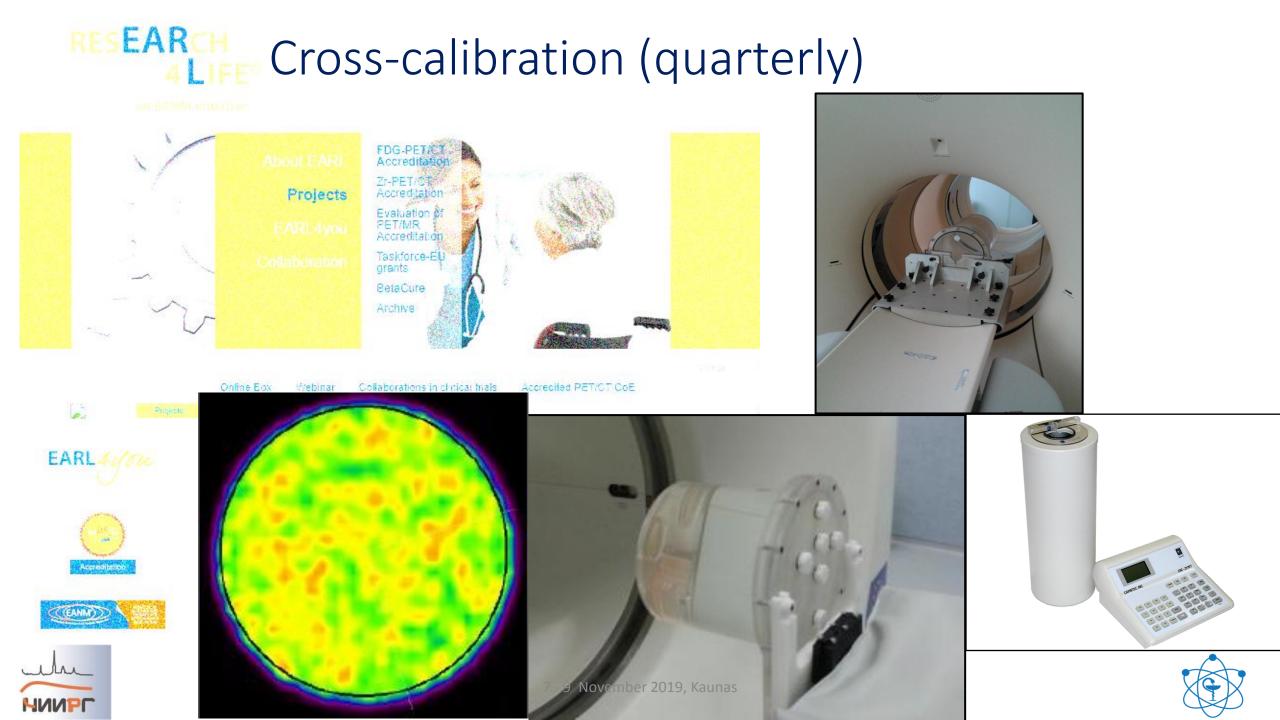
- The lack of requirements on the acceptance and periodical tests of diagnostic equipment
- The lack of requirements of the QC of radiometers and measurement equipment
- The lack of recommendations for the protocol optimization
- The lack of dedicated staff (medical physicists)



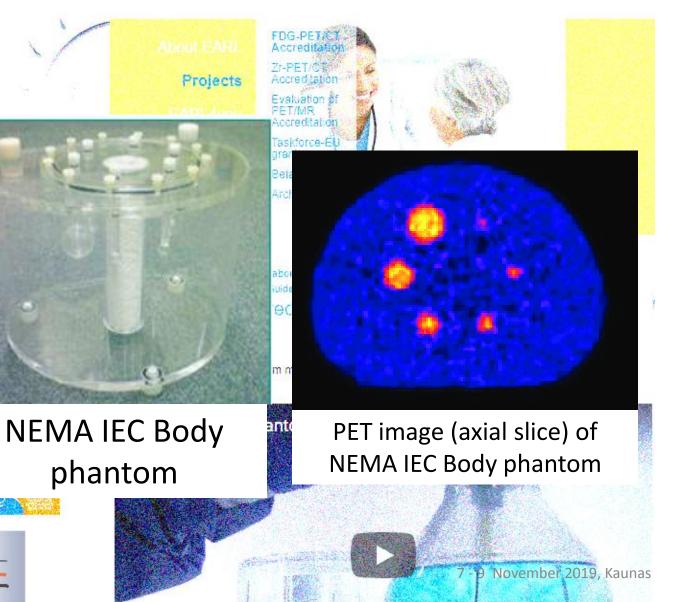


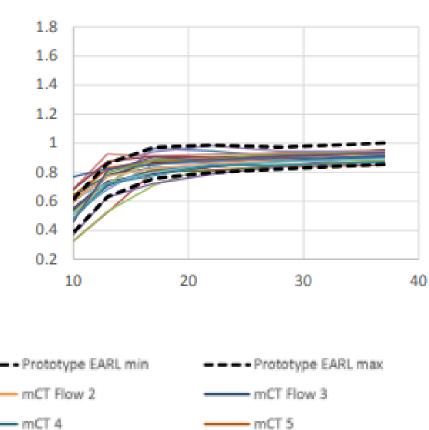
QC of diagnostic equipment

- Acceptance tests
 - At the installation to estimate the baseline characteristics
 - PET (vendor specific / NEMA standards (international) / GOST R MEK 61675-1 – 2013 (for vendor engineers)
 - CT (GOST R MEK 61223-3-5 2008)
- Periodical tests
 - Focused on the constantly of the parameters and characteristics
 - PET (vendor specific)
 - CT (GOST R MEK 61223-2-6 2001)


QC of measurement equipment

- calibration should be performed for all radionuclides that are used in the department
- annual calibration according to an approved methodology
- constant monitoring of the zero value
- daily stability control with the same radioactive source (for example, ¹³⁷Cs)
- annual accuracy control with calibration sources preferably in the range of low, medium and high energies (for example, ⁵⁷Co - 122 keV, ¹³³Ba - 356 keV and ¹³⁷Cs - 662 keV)
- annual linearity control covering the entire range of work activities (usually from a few GBq for daily package to the lowest diagnostic activities - tens of MBq)



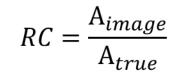

RESEARCH QC of diagnostic images

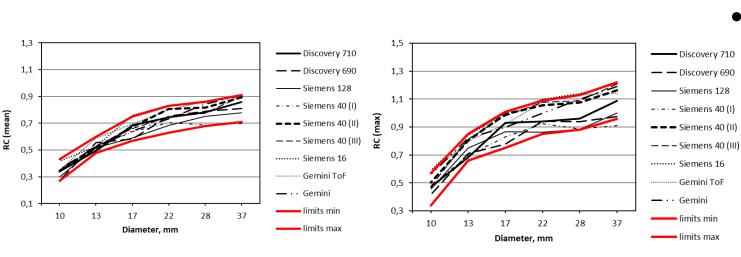
EA

NUNPL

GE Discovery MI 1 Q,Clear 1 — GE Discovery MI 2 Q,Clear 2

Discovery 710 1 Q.Clear 1


SUVmean


Discovery 710 2 Q.Clear 2

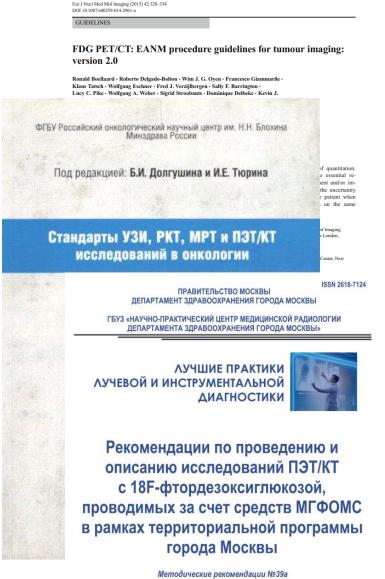
QC of PET images with NEMA IEC Body

RCmax

RCmean

- QC methodic:
 Scanning of NEMA IEC
 RC calculation
 Comparison with the criteria
- RC (recovery coefficients) allow
 to:

to:


- Estimate the real activity accumulated in the lesion
- Provide the opportunity to compare the results from different PET systems

Requirements of the development of standard operating procedures

- requirements for preparation of the patient for the examination
- methods for calculation of the administred activity of radiopharmaceutical
- requirements for radiopharmaceutical injection
- time from injection to the scan
- acquisition and reconstruction protocols, as well as image processing
- staff involved at each stage of the examination

Patient dose monitoring

Radiopharmaceutical (MU 2.6.1.3151-13)

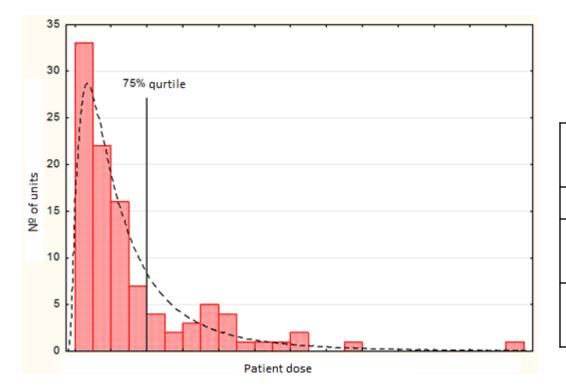
2.6.1. ГИГИЕНА. РАДИАЦИОННАЯ ГИГИЕНА. ИОНИЗИРУЮЩЕЕ ИЗЛУЧЕНИЕ, РАДИАЦИОННАЯ БЕЗОПАСНОСТЬ

Оценка и учет эффективных доз у пациентов при проведении радионуклидных диагностических исследований

CT (MU 2.6.1.2944-11)

2.6.1. ИОНИЗИРУЮЩЕЕ ИЗЛУЧЕНИЕ, РАДИАЦИОННАЯ БЕЗОПАСНОСТЬ

Контроль эффективных доз облучения пациентов при проведении медицинских рентгенологических исследований


	Dose coefficients, mSv/MBq					
Radiopharmaceutical	Adult	15 y.o.	10 y.o.	5 y.o.	1 y.o.	
¹¹ C-methionine	0,0084	0,011	0,017	0,026	0,047	
¹¹ C-choline	0,0043	0,0055	0,0086	0,014	0,026	
¹³ N-ammonie	0,002	0,0024	0,0036	0,0067	0,011	
¹⁸ F-FDG	0,019	0,024	0,04	0,06	0,1	
¹⁸ F-NaF	0,024	0,03	0,046	0,076	0,15	
¹⁸ F-DOPA	0,025	0,032	0,049	0,07	0,1	
⁶⁸ Ga-PSMA	0,020	-	-	-	-	
⁶⁸ Ga-DOTA TATE/NOC	0,026	-	-	-	-	

Методические указания	Dose coefficients, mSv/mGy cm							
MY 2.6.1.3151—13	Anatomical region	Adult	15 y.o.	10 y.o.	5 y.o.	1 y.o.	Newborn	Методические указания МУ 2.6.1.2944—11
	Head	0,0023	X1,1	X1,3	X1,7	X2,2	X2,6	
	Neck	0,0054						
	Chest	0,017	X1,1	X1,4	X1,6	X1,9	X2,2	
	Abdomen	0,015	X1,1	V1 F	X1,6	X2,0	X2,4	
	Pelvis	0,019		X1,5				
	Whole body	0,017	0,020	0,027	0,031	0,038	0,043	
	Chest/Abdomen	0,013	0,017	0,028	0,036	0,051	0,065	
	Abdomen/Pelvis	0,015	0,019	0,031	0,041	0,059	0,075	
	Extrimities	0,0002	0,0003	0,0007	0,0010	0,0018	0,0027	

Optimization of radiation protection. Diagnostic reference levels

Diagnostic reference levels for CT in PET/CT in Russia

Anatomical region	DLP, mGy∙cm	Effective dose, mSv	
Head	1200	2	
Whole body* (low-dose protocol)	600	9	
Whole body* (diagnostic protocol)	1000	15	

Conclusion

- Although the developed methodologies are not revolutionary and exist in European practice this is a major step in Russia
- It should be noted that the guidelines were developed jointly with the vendors, radiologists and NM physicians meaning that they would be implemented in practice
- The guidelines include the mandatory sets of tests for the equipment that would be included into the service contract
- The guidelines are maximally harmonized with the EANM accreditation program this will allow promoting EANM program in Russian medical facilities

Thank you for your attention!

Larisa Chipiga *Research Institute of Radiation Hygiene **A.M Granov Russian Scientific Center of Radiology and Surgical Technologies Email: larisa.chipiga@gmail.com

