





## FIRST APPROACH TO 3D DOSIMETRY VERIFICATION USING LEKSELL GAMMA KNIFE® ICON™

Evelina JASELSKĖ, Linas KUDREVIČIUS, Viktoras RUDŽIANSKAS, Tadas DIDVALIS, Diana ADLIENĖ

2019

kauno technologijos universitetas



## **POLYMERIZED DOSE GELS IN MEDICINE**

Gel dosimeters are manufactured from radiosensitive chemicals. Dosimetric gels are crosslinked networks of polymers which behave as viscoelastic solids.

<u>These gel dosimeters record the radiation dose distribution in 3D.</u>
<u>Polymer dose gel is nearly human soft tissue equivalent.</u>

Potential applications

Low-energy X-ray; High-linear energy transfer (LET); Proton therapy; Radionuclide therapy; (Boron) neutron capture therapy; Intensity-modulated radiation therapy (IMRT, VMAT); Stereotactic radiosurgery; Radiosurgery with Gamma knife; Brachytherapy dosimetry.







#### **GELS PREPARATION PROCESS**

## •Select an appropriate type of polymer gel:

|                    | Anoxic / Normoxic | Gelatin / Agarose | Acrylamide | N,N' methalyne<br>bis acrylamide | Methacrylic acid | Acrylic acid | Na mathacrylate | 4-vinylpyrrolidone | 2-hydroxyethyl<br>acrylate | 2-hydroxyethyl<br>methacrylate | Ascorbic acid | hydroquinone | Copper(II)<br>sulphate | THPC <sup>1</sup> | THPS <sup>2</sup> |
|--------------------|-------------------|-------------------|------------|----------------------------------|------------------|--------------|-----------------|--------------------|----------------------------|--------------------------------|---------------|--------------|------------------------|-------------------|-------------------|
| PAG                | A                 | F                 | •          | •                                |                  |              |                 | _                  |                            |                                |               |              |                        |                   |                   |
| nPAG <sup>3</sup>  | N                 | E                 | •          | •                                |                  |              |                 |                    |                            |                                |               |              |                        | •                 | •                 |
| PAGAT <sup>4</sup> | N                 | G                 | •          | •                                |                  |              |                 |                    |                            |                                |               | •            |                        | •                 |                   |
| PAGAS              | N                 | G                 | •          | •                                |                  |              |                 |                    |                            |                                | •             |              |                        |                   |                   |
| MAGIC              | N                 | G                 |            |                                  | •                |              |                 |                    |                            |                                | •             | •            | •                      |                   |                   |
| nMAG               | N                 | G                 |            |                                  | •                |              |                 |                    |                            |                                |               |              |                        |                   | •                 |
| MAGAS              | N                 | G                 |            |                                  | •                |              |                 |                    |                            |                                | •             |              |                        |                   |                   |
| MCA                | Α                 | G                 |            | •                                | •                |              |                 |                    |                            |                                |               |              |                        |                   |                   |
| MAGAT              | N                 | G                 |            |                                  | •                |              |                 |                    |                            |                                |               |              |                        | •                 |                   |
| Methacrylate       | Α                 | G                 |            | •                                |                  |              | •               |                    |                            |                                |               |              |                        |                   |                   |
| VIPAR              | Α                 | G                 |            | •                                |                  |              |                 | •                  |                            |                                |               |              |                        |                   |                   |
| HEA                | Α                 | G                 |            | •                                |                  |              |                 |                    | •                          |                                |               |              |                        |                   |                   |
| HEMA               | Α                 | G                 |            | •                                |                  |              |                 |                    |                            | •                              |               |              |                        |                   |                   |
| ACA                | Α                 | G                 |            | •                                |                  | •            |                 |                    |                            |                                |               |              |                        |                   |                   |
| PRESAGE            | N                 |                   |            |                                  |                  |              |                 |                    |                            |                                |               |              |                        |                   |                   |







## **GELS PREPARATION PROCESS**

### **Preparation:**

The radiation sensitive gel is fabricated and poured into tightly closed vial and left for 24 hours in dark to set.



Irradiation and read-out:

The vial with a gel is exposed to the high energy beam and polymerizes creating regions inhomegeneous physical and optical density.







**DOSE EVALUATION METHODS** 

## Irradiated polymerized dose gels vials could be evaluated using different methods:

- ➤Magnetic resonance imaging;
- ≻Optical imaging;
- Computed tomography;
- ≻Ultrasound;
- >SEM and TEM scanning microscopy;

etc.









#### **POLYMERIZATION CHEMISTRY**





SSD 100cm;

PDD100% at 0.5cm depth





| Co-60 source                                                           | Ir-192 source                               |  |  |  |  |
|------------------------------------------------------------------------|---------------------------------------------|--|--|--|--|
| <b>Teletherapy unit ROKUS-M</b><br>Activity: 4.28•10 <sup>13</sup> Bq, | HDR Brachytherapy unit<br>MICROSELECTRON V2 |  |  |  |  |
| Dose rate: 0.25 Gy/min,                                                | Activity: 0.35•10 <sup>12</sup> Bq,         |  |  |  |  |
| Characteristic energies:                                               | Air kerma rate: 0.73 Gy/min,                |  |  |  |  |
| $\gamma_1 = 1.17$ MeV,                                                 | Characteristic energies:                    |  |  |  |  |
| $\gamma_2 = 1.34 \text{ MeV}$                                          | $\gamma = 0.37$ MeV,                        |  |  |  |  |
|                                                                        | $\beta = 1.454 \text{ MeV}$                 |  |  |  |  |
| Broad beam geometry;                                                   |                                             |  |  |  |  |
| Irradiation field 10x10 cm <sup>2</sup>                                | Point source geometry                       |  |  |  |  |

PDD 100% at 1.0 mm (radial distance)







## **IRRADIATION EQUIPMENT**

- 192 Co-60 sources;
- Activity: 195.53 TBq (at loading)
- Dose rate: 3.493 Gy/min (at calibration)
- 8 sectors with 4, 8 and 16 mm collimators;
- Radiological accuracy < 0.5 mm;



- CBCT with 2.5 and 6.3 mGy CTDI preset;
- Energy: 90 kVp, 332 projections, reconstruction volume 224<sup>3</sup> mm;
- Real-time HD motion management (HDMM) system;
- IR camera tracks at 20 Hz, accuracy 0.15 mm, threshold 0.5 3 mm.





## KAUNAS CLINICS GELS IRRADIATION

|                                  | I shot        | II shot    |  |  |  |  |
|----------------------------------|---------------|------------|--|--|--|--|
| Dose rate                        | 3.408 Gy/min  |            |  |  |  |  |
| Prescription                     | 12.0 Gy @ 50% |            |  |  |  |  |
| Collimator                       | 8             | 4          |  |  |  |  |
| X,Y,Z (mm)                       | 100,130,100   | 90,120,110 |  |  |  |  |
| Dose rate at<br>focus,<br>Gy/min | 1.91          | 2.85       |  |  |  |  |
| Time, min                        | 12.12         | 8.14       |  |  |  |  |
| Output<br>factor                 | 0.9645        | 0.9666     |  |  |  |  |













## CONCLUSIONS

- Polymer gels dosimetry are only one 3D dose distribution method that can be used for indvidual dosimetry in gamma knife therapy.
- nPAG and VIPARnd dose gels are sensitive enough to replicate absorbed dose in three dimension with closely similar shape simulated with gammaplan software.
- Plotted results of T2 (ms) indicated a good agreement estimating the dose response of each gel.
- Getting results enable to assume that VIPARnd dose gels could have better opportunities to replicate abosrbed dose in larger dose range, but more different calculations are required to perform.



# **THANK YOU!**

