MEASUREMENT OF RADON EXHALATION RATE USING LOCAL TECHNIQUE

Lamiaa Abdelrazik

Egypt

Prof. Dr. H. M. El-Samman

Prof. Dr. W. M. Arafa

Prof. Dr. A. H. Ashery

Why Radon!

Radon Daughters and Health Hazard

Experimental Work

The Constructed Chamber

- 1. Sample Chamber
- 3. Connection Tube between the two Chambers
- 5. Hole with rubber Gloves
- 7. AB-5 Monitor
- 9. CR-39 Detector
- 11.Heater
- 13. Flask with water

- 2. Measuring Chamber
- 4. Valve
- 6. Building Material Sample
- 8. CPRD Detector
- 10. Temperature Controller
- 12. Thermo-Hygrometer
- 14. CaCl₂ Crystal

1. Active Method

AB-5 Monitor

Continuous Passive Radon Detector "CPRD"

2. Passive Method Solid State Nuclear Track Detector "SSNTD"

CR-39 Film

- CR-39 films are Polyallyl diglycoal Carbonate (ADC)
- CR-39 has a chemical formula $C_{12}H_{18}O_7$

Chemical Etching Process

Tracks Counting System

The cross section of the CR-39 detector

$$Rn\ Conc. = \frac{T}{k.\ t}$$

T : is the average number of tracks (tracks/cm²).
K : is the calibration factor (tracks.cm⁻² .d⁻¹/ Bq.m⁻³).
t : is the exposure time (day).

Samples Collection

Soil Samples

Soil sample Code no.	Origin	
1		
2	Gabel El Misikat	
3		
4	Cabal El Majal	
5	Gabel El Majal	

27°00"N 26°00"N 25°00"N 25°00"N

Building Materials Samples

White Cement

۲

Sand

Marble

Gray Cement

Fertilizers Samples

	Type of fertilizers	Origin
\times	Fertilizer (1)	Alexandria Company for Fertilizers and Chemical Industries
	Fertilizer (2)	Financial and Industrial Company for Fertilizers and Chemical Industries

Granite

Ceramic

Chamber Test

Calibration of CR-39 Detector

* Abo-Elmagd M., Metwally S.M., El-Fikib S.A., Eissa H.M., Salama E., 2007, Passive and active measurements of radon-related parameters inside ancient Egyptian tombs in Luxor, Radi. Meas. 42, 116 – 120.

Comparison between Active and Passive Detectors

Comparison between Active and Passive Detectors

Determination of Radon Half-life Time Inside the Chamber

The experimental halflife time of radon was found to be <u>3.81 days</u>, which is in perfect agreement of the known half-life time of radon <u>3.82 days.</u>

Correction of Radon Concentration

It is very important to take into consideration:

The air exchange due to chamber leakage

2

When the radon concentration in the chamber starts to approach that of the radon concentration in the sample, radon has significant probability of diffusing back into the sample.

Leakage Rate Calculation

* Christopher Y.H. Chao, Thomas C.w. Tung, Daniel W.T. Chan, Gohn Burnett, 1996. Determination of radon emanation and back diffusion characteristic of building materials in small chamber tests. Building and environment 32(4), 355-362.

Back Diffusion Calculation

Back Diffusion Coefficient Values

Soli Sample code	λ _{diffusion} (hr ⁻¹)	Sample Type	λ _{diffusion} (hr ⁻¹)
1	9.49*10 ⁻³	White cement	2.8*10 ⁻² - 8*10 ⁻²
		Gray Cement	1.2*10 ⁻² - 8.7*10 ⁻²
2	5.40*10 ⁻³	Sand	3.5*10 ⁻³ - 7.6*10 ⁻²
3	7.75*10 ⁻³	Ceramic	1.0*10 ⁻² - 1.3*10 ⁻²
1	1 44*10-2	Marble	7.5 *10 ⁻³ - 10.4 *10 ⁻²
4	1.44 10 -	Granite	4.7*10 ⁻³ - 6.0*10 ⁻³
5	3.59 *10 ⁻³	Fertilizer	3.1*10 ⁻³ - 8.4*10 ⁻³

The value of back diffusion depends on the sample types and origin area

Each area has a characterize specification (grain size, porosity, radium contents) which affects on the radon concentration and consequently the back-diffusion process.

Exposure Time (hr)

Measurement Radon Concentration

Samples	Radon concentration (Bq/m ³)
Soil	36.91 – 1754.77
Building Materials	9.2 – 72.68
Fertilizers	69.94 -192.45

The radon concentrations in the Gabal El-Misikat higher than Gabal El-Majal

The radon concentrations in all building materials and fertilizers samples is below the world average value (200 Bq/m³)* and hence do not pose any health hazard.

*(International Commission of Radiation Protection) (ICRP)

Measurement of Radon Free Exhalation Rate & Emanation Rate

Radon Exhalation is the number of atoms leaving the soil per unit surface per unit time. (Bq/m².hr)

A good indicator of radon risk

The process that controls the movement of radon atoms from solid grains into free spaces of materials (pores, micropores and cracks) is called Emanation process.

Measurements of RadonExhalation RateandEmanation Rate

F	$C \lambda_{\rm eff} V$
$L_{\rm X} =$	$1 - e^{-\lambda_{\rm eff}t}$

$$E_{\rm o} = \left(M_{\rm e} - \frac{q}{V} C_{\rm o} \right) \frac{V}{A}$$

Samples	Radon exhalation rate (Bq/m².hr)	Radon emanation rate Bq/m ² .hr
Soil	0.09 -3.68	BDL* - 58.05
Building Materials	0.02 -0.29	BDL* - 10.06
Fertilizers	0.1377 -0.4	BDL*

*Below Detected Level

The great variation of exhalation and emanation rates is expected due to the difference of radium contents between the measured samples and its grain size

The Variation of Radon Exhalation Rate with Radon Concentration

There is a good correlation between radon concentration and radon exhalation rate

Factors Affecting Radon Concentration, Exhalation and Emanation Rates

Effect of Relative Humidity

	Humidity %	Rn conc. Bq/m³	Ex. Bq/m²hr	Em. Bq/m²hr
% ⁰ [±]	42	1382.48	2.95	41.40
	89	1423.11	3.06	42.11
	95	1578.31	3.46	42.96

An increase in the amount of water in the pore spaces increases the probability of capturing radon atoms in pore spaces and <u>not</u> <u>be reabsorbed by other grains</u>

Effect of Temperature

Ē	Temp. In °C	Temp. out °C	Rn conc. Bq/m ³	Ex. Bq/m²hr	Em. Bq/m²hr
	25	22 – 24	1478.13	3.63	9.02
	40	25 – 27	1071.27	2.63	5.80
	55	26 - 29	921.21	2.26	4.25

This phenomenon may be due to:

- The humidity decrease with increasing temperature.
- when temperature inside the chamber is higher than the outdoor; the warm air with low radon concentration may flows outside.

Effect of Sample Surface Area

Exposure surface area (m ²) Rn conc. Bq/m ³		Ex. Bq/m²hr	Em. Bq/m²hr	
0.0028	1367.70	2.78	201.44	
0.0153	977.26	1.96	18.04	
0.0415	820.29	1.64	4.59	

Effect of Grain Size

Grains form	Rn conc. Bq/m³	Ex. Bq/m²hr	Em. Bq/m²hr
Rock (> 2cm)	32.00	0.29	8.14
Stone (2cm - 5mm)	30.79	0.22	9.09
Crushed (< 2mm)	29.13	0.20	10.06

Thank you!

Friedrich Ernst Dorn (1848 -1916)